
Programming hybrid systems with implicit memory based synchronization

Jens Breitbart
Research Group Programming Languages / Methodologies

Universität Kassel, Germany
Email:jbreitbart@uni-kassel.de

Abstract—In the last years CPU performance increases came
with an increase in software development complexity. One of
the next big changes in CPU architecture may be so-called
hybrid multicore chips, which combine both multicore and
manycore technologies on the same chip. Unfortunately, this
increase in performance again may lead to an increase in
development complexity. In this paper we suggest a dataflow
driven programming model for hybrid multicore CPUs able to
decrease complexity. We designed our model to work efficiently
on non cache-coherent systems and in NUMA scenarios, which
may both be issues exposed from the hardware in the near
future. Our model is based on single assignment memory
combined with PGAS-like explicit placement of data. Reading
uninitialized memory results in the reading thread to be
blocked until data is made available by another thread. That
way threads can easily work in parallel and fine grained
synchronization is done implicitly. Single assignment memory
removes any cache coherency issues, whereas explicit data
placement easily copes with NUMA effects. We implemented
our model in a proof of concept C++ library for CUDA and
x86 architectures, and use the scan algorithm to demonstrate
that it is fairly easy to coordinate two GPUs and multiple CPU
cores.

I. INTRODUCTION

In the last decade we saw a large increase in single
thread performance being made available transparently to
developers. When this trend came to an end, vendors started
putting multiple cores in one CPU to still be able to
increase performance of the whole chip, yet this performance
increase came with increased complexity for developers.
Lately performance increase using this technique seems to
slow down, but manycore chips such as GPUs on the other
hand continue to increase performance at a high rate and
provide multiple times the performance of modern CPUs.
Unfortunately, not all problems are feasible for manycore
chips, and the rather slow connection between multicore
CPUs and manycore GPUs makes it hard to effectively have
both types of cores closely cooperate on solving tasks.

A possible solution for future hardware are so-called
hybrid multicore chips, which combine different kind of
cores on the same chip. This allows to increase overall chip
performance and eases the communication between different
kind of cores. Lately AMD started shipping its CPU and
GPU hybrid chip named Llano, which is currently the only
hybrid chip in mainstream market. Using both components
together again comes with an increased complexity for

developers. We suggest a new programming model to reduce
the complexity, also considering other upcoming hardware
challenges:

• Hybrid CPUs consist of different kind of cores, e. g.
throughput and latency optimized cores. Having such
components working together requires fine-grained
pair-wise synchronization.

• It is unclear if future hybrid CPUs will be cache
coherent.

• With chip size increasing and multiple memory con-
trollers being added to one chip, NUMA effects may
appear between the different kind of cores.

We designed our programming model to coordinate differ-
ent kind of cores and to effectively tackle the above issues.
Our model can be used to coordinate cores of the same kind,
but specific models may be more effecient.

In our model, memory shared by different kind of cores
is single assignment and thereby can have two states: it
can contain data, or be uninitialized. A thread reading
uninitialized memory is blocked until another thread writes
to that memory. A thread writing data automatically wakes
up all threads waiting for the written data. In the extreme
one can use this synchronization on bit level, but bitwise
synchronization is in general unnecessary so we apply this
mechanism on batches of data. Oversaturating the system
with threads allows to hide latency introduced by syn-
chronization. To cope with NUMA effects we use explicit
placement of data, so it can be controlled which cores can
access the data more efficiently.

We expect this form of synchronization to be easy to use
and debug, as one cannot have race conditions. The worst
case is a deadlock of a thread reading data that is never
written, however debugging such a case is mostly easier
than identifying race conditions, as the threads are blocked,
clearly naming which data dependencies are not satisfied.
Single assignment data obviously eliminates the need for
cache coherency, as data cannot be changed. Offering direct
placement of data to cope with NUMA issues is expected
to be easier to use than most implicit placement techniques
when NUMA costs are high, but using implicit placement
can be used in case NUMA issues are not important. Overall,
the requirements for implementing our model are rather
minimal. Our software implementation uses flags to indicate



the state of single assignment data. The implementation does
not require atomic operations, but only memory fences. The
model also allows for more efficient hardware implementa-
tion, as e. g. waiting for data currently unavailable is similar
to modern GPUs suspending threads until the requested
data is made available. Crays XMT [1] architecture offers
a similar synchronization technique to our in hardware.
Previous dataflow architectures are based on similar concepts
too, e. g. the Manchester Dataflow architecture [2] used
memory addresses to synchronize single instructions.

We implemented our model as a proof of concept C++
library offering vector and matrix data structures i.e., com-
munication partners may synchronize on tiles of these struc-
tures. The library currently does not directly target hybrid
chips, but we use CUDA’s unified virtual address space to
simulate a hybrid architecture. Our test system consists of
two Fermi based GPUs and an Intel Nehalem based Core
i7. Due to the lack of a hybrid CPU we have not yet
optimized our library, but demonstrate its functionality by
using memory placement and fine granular synchronization
to keep all two GPUs and up to four CPU cores busy. We
implemented a variation of the well-known scan algorithm
of Blelloch [3] modified for GPUs by Harris et al. [4] as
an example. We modified the algorithm so it uses multiple
GPUs and CPU cores. Due to the relative slow memory
transfers between CPU and GPU, we can obviously not
achieve speedups, but show that one can synchronize all
devices with hardly any additional work for developers.

The paper is organized as follows. First, Sect. II discusses
possible hybrid multicore CPUs and upcoming hardware
challenges, followed by an introduction to our model in
Sect. III. Section IV discusses data structure creation and
usage based on our model. A discussion on software im-
plication of our model is in Sect. V. Section VI gives an
overview of the hardware we used for testing, whereas
Sect. VII discusses our model implementation. The scan
algorithm is discussed in Sect. VIII. The paper finishes with
an overview of related work and conclusions, in Sects. IX
and X, respectively.

II. HYBRID MULTICORE HARDWARE

Current shared memory hardware architectures are dom-
inated by two approaches: latency oriented cache coherent
multicore CPUs and throughput oriented manycore GPUs.
As said before, multicore architectures seem to reach a
point at which further performance increase becomes rather
complicated [5], [6]. So maintaining cache coherency for
all cores gets harder with each core. Manycore architectures
continue to increase performance and currently a GPU
provide multiple times the performance of a multicore CPU,
yet not all problems are feasible for manycore architectures.
In most current, systems CPUs and GPUs can only commu-
nicate using the rather slow PCI Express bus.

Future processors can be built as so-called hybrid multi-
core CPUs, which consist of different kind of cores each
optimal for certain types of tasks. In practice there are
currently hardly any such systems on the market, however
we give a brief overview next and discuss the possibilities
and problems of such hardware in the rest of this section.
We refer to hybrid multicore CPUs as hybrid chips and call
each unit that consists of core of the same type a module, so
a hybrid chip consists of multiple modules each consisting
of uniform cores.

Probably the most well-known hybrid chip of the last
years was the Cell Broadband Engine [7], which was able
to achieve high performance compared to other CPUs of
its time. Future development of the Cell B.E. seems to
be discontinued. A new hybrid chip is AMD’s already
mentioned Llano chip [8], which combines a quad-core CPU
with a manycore GPU. The chip is focused on mainstream
desktop use and not on high performance computing. Both
modules share the memory interface, however not the same
address space so data is not automatically shared [9]. We
expect this limitation to be lifted with future hardware
generations, but do not expect that current shared memory
programming techniques are a good match for such systems
due to the issues discussed next. Liu et al. [10] came to a
similar finding, when evaluating programming models for
Intel’s upcoming MIC architecture, previously known as
Larrabee. MIC consists of multiple x86 based in-order CPUs
with large vector units. We identified three major challenges
crucial for developing a programming system for upcoming
CPUs.

No cache coherence As said, we expect hybrid chips to
offer shared memory for all cores. We furthermore assume
future hybrid chips to contain caches, but not necessarily
that they will be coherent. In case hybrid chips will contain
coherent caches our model is still correct. On non cache
coherent systems, memory barriers for the whole CPU
will be getting rather expensive. Communication between
the different kind of cores should be minimized and well
defined. We design our programming model to effectively
cope with the restriction of non-cache coherent hardware.

Efficient fine grained synchronization Hybrid systems
are most efficiently used when all cores are busy. There
may be external factors like memory bandwidth, power
consumption, or heat dispersion which can prevent a chip
from being able to keep all its cores busy, yet optimally all
cores are supplied with tasks matching their architecture. We
design our programming model to be able to allow effective
usage of all cores. One of the main issues arising from a
hybrid chip is that there can be both latency (CPU like) and
throughput (GPU like) oriented cores on the same chip for
which a form of fine grained pair wise synchronization must
be employed. For example, if a latency core must wait until
all throughput cores have completed their tasks, it will result
in poor load balancing for the latency core.



NUMA Another issue with current systems is that mem-
ory bandwidth is increasing rather slowly compared to
processing power. A solution to increase memory bandwidth
is using multiple memory controllers on the same chip, as
it is e. g. done by Intel’s SCC [11], which is a manycore
architecture without a shared address space. Having the
memory controllers at the different sides of the chip may
lead to NUMA issues, that is accesses to a certain memory
location have a higher latency for some cores. We take this
issue into account for our programming model as well. For
simplicity we expect there to be one memory controller
per module for the rest of this work, however the overall
observations stay true even if the practical setup is changed.

III. PROGRAMMING MODEL

In this section we first discuss the impact of the issues
described in the last section on current shared memory
programming models using OpenMP as an example. We fur-
thermore discuss CUDA and OpenCL and their restrictions
regarding hybrid systems. After that we detail our model
and discuss how it efficiently solves the issues.

The OpenMP memory model defines the so-called flush
as a operation at which all writes of the calling thread
must be made available to all threads and all previously
done writes by other threads must be visible to the calling
thread. On non cache coherent systems this requires writing
all changed data to memory and reread all data. A flush
is automatically included in almost all OpenMP constructs.
After a synchronization with e. g. a barrier all memory reads
must provide the threads with up to date values, which
can increase the cost of a barrier in a non cache coherent
system. Both these issues make OpenMP not a good match
for non cache coherent systems. OpenMP also offers lock-
like mechanisms for synchronization, which impose rather
high overhead and may therefore not be feasible for fine
grained synchronization, as well. OpenMP locks require all
writing and reading threads to set and unset the lock, which
could easily result in contention on the lock even if data is
not changed. OpenMP by itself does currently not support
NUMA optimization.

NVIDIA’s CUDA [12] and OpenCL [13] in general are
rather similar regarding their programming model. They
were originally designed for distributed memory between
the different modules, and memory is only consistent after
a barrier synchronization of two modules. It is possible to
manually synchronize at a finer scale, yet this is rather
complicated as it requires explicit memory barriers and
atomic operations. Data from a different memory space is
normally read by making an explicit copy into memory local
to that module and developers must make sure that the data
is up to date whenever they access it.

Our model defines how communication and synchroniza-
tion between the different modules is handled. It is of
course possible to use the same techniques within a module,

however module specific models can be more effective. For
example one can use CUDA to program throughput cores
and use our model to synchronize with latency cores. Our
model has two major aspects:

• Synchronization is defined in a dataflow-like form,
that is we tie synchronization to reading/writing single
assignment memory.

• PGAS-like explicit memory placement is used to deal
with NUMA issues.

The model is based on memory that is shared by all cores.
We expect memory to be single assignment only, so exactly
one thread can write once to a specific memory location,
whereas it can be read multiple times by all threads. As
memory is single assignment, we can define two states for
any memory location:

• memory is uninitialized or
• it contains data.
Synchronization is based on these states following two

rules:
• If a thread tries to read from uninitialized memory, it

is blocked.
• A thread writing data will unblock all threads waiting

for the written data.
Dataflow-based synchronization mechanisms are currently

hardly used in HPC programing, but have been discussed
before. A detailed overview can be found in the related
work section. We could use our form of synchronization on
bit level, which however is not feasible for most hardware
and unnecessary for most problems. We therefore define the
synchronization size as the size at which synchronization is
done. We call this concept synchronization granularity and
the block of data to which synchronization is applied a syn-
chronization unit. For example, consider an algorithm using
tiled matrices. The synchronization size can be identical to
the tile size by which a tile becomes a synchronization unit.
As a result, threads are only able to read data of a completely
written tile. Working on a form of data blocks is essential for
most hardware architectures to achieve high performance, as
it e. g. allows effective use of CPU caches or GPU scratch
pad memory. Requiring some form of blocking for syn-
chronization therefor hardly increases complexity as existing
blocking schemes can be reused. The synchronization size
can differ for different memory locations and the optimal
synchronization size depends on the algorithm and hardware
used. The model gives the opportunity to hide possible
latency introduced by synchronization with oversaturating
threads, provided that threads can be effectively suspended.

Since data is single assignment, we can effectively deal
with non cache coherent systems, because there is obviously
no coherency issue. Data can only be loaded after it has
been written and cannot be changed after that. The only
information to be kept coherent is the state of a memory
location, yet this can be simply implemented by a flag



per synchronization unit or even specific hardware support
could be added. Previous dynamic dataflow architectures
already had support for similar kind of status information
in hardware using content-addressable memory, as it was
e. g. done in the Goodyear STARAN [14].

Our model allows for fine grained pair-wise synchroniza-
tion. The minimal synchronization size still depends on the
hardware, but the overhead for the synchronization is rather
low. Again a trivial implementation using an additional
flag to store the state of the data only requires a memory
barrier before the flag is set to indicate the data is available.
When reading this memory the flag must be checked before
accessing the data. Checking can spinwait or suspend the
thread in case the data is not available. It is again possible
to implement a more effective hardware solution for this
kind of synchronization, as the problem by itself is similar
to suspending a reading thread until its requested data is in
the cache.

We use explicit memory placement of data to solve the
NUMA issues discussed in the previous section. The form
of placement is similar to e. g. the partitioned global address
space (PGAS) model in which the place where data is stored
is part of the type of the data. For example, if CPU like
cores generate data that is read by throughput cores multiple
times, it can be placed near the throughput cores to speed
up reading the data. In case, the hardware does not include
any NUMA issues, the placement of data can be ignored.

The model as discussed here cannot only be used to pro-
gram hybrid multicore CPUs, but can also easily be extended
to support clusters using a PGAS approach. Synchronization
can be done identical to what we described before and even
the data placement can be used to store data at certain nodes
to speed up reading.

IV. DATA STRUCTURES

In this section, we describe how synchronization through
matrix and vector data structures can be realized in our
model. Afterwards, we will sketch examples of their usage.
We have implemented both data structures, but not all
distributions discussed below. Note that the model is not
limited to these data structures or distributions.

A data structure in the model is extended by two attributes
• synchronization size and
• data distribution
Both attributes are important, yet their values are hard

to determine as they are influenced by both hardware and
algorithm used. As a result they should be changeable
without changing the data structures itself. In general syn-
chronization size should directly be exposed to developers,
so they can choose the best matching value. Data distribution
can be done in several ways and we discuss some examples
next.

A simple data structure is a tile based matrix that stores
all data in the same module. The matrix stores data in

tiles, which is well known and used for, e. g. increased
cache utilization. The synchronization size of the matrix is
identical to the size of the tiles, whereas the tile size is a
factor to be considered during algorithm design. The data
of such a matrix can be accessed by all modules. The same
approach is used for the vector data structure, except that
data is split in stripes not tiles.

In case the memory bandwidth provided by one module
is not sufficient, tiles can be distributed across all modules.
Such a distribution would allow all memory controllers to
be used when reading the matrix, which provides a higher
overall bandwidth at the cost of having no single module
with low latency access to the whole data.

A vector with a synchronization size of one can easily be
used to sum up input values, while part of the input is still
being calculated. This can be implemented by using a CPU
thread just reading vector elements and locally sum up all
values. The CPU thread is blocked whenever the input is
not yet ready.

The matrix data structure can be used to have throughput
cores use it in computation, while parts of the matrix are
still being read from file by a latency core. Synchronization
is done implicit. Data placement is not important regarding
correctness of the program, but only regarding performance.

V. SOFTWARE IMPLICATIONS

Our model breaks with a set of assumptions common in
most well used programming models, yet we believe that
software development complexity is not increased. We first
discuss the single assignment nature of our model related
to current CUDA programming and afterwards discuss syn-
chronization granularity and memory placement regarding
current shared memory approaches.

GPUs require off-chip memory accesses to be minimized
due to their high latency. In practice this results in GPU
kernels storing interim results on the chip and only final
results are stored in off-chip memory. It is uncommon to
modify data written once to off-chip memory in the same
kernel. The final results are read in other kernels or by the
CPU. This form of communication is in no way limited by
the single assignment approach, as data is not changed after
it is written. A common exception for this is that memory is
reused to prevent allocating new memory, yet memory can
be freed and new memory can be allocated in our model
offering a direct solution.

Using locks often use a form of synchronization gran-
ularity, even though not explicitly. In most scenarios it is
unreasonable to set a lock for every modification of a single
entry in a data structures, yet a form of batch processing
effectively reduces the overhead. Furthermore it is common
to try to work on batches of data for increased cache
utilization. Our model explicitly incorporates this technique
as synchronization granularity and even though it requires



explicit notion of the synchronization size, the problem by
itself is not new.

The probably most common memory placement technique
in NUMA systems is first-touch by which a memory page
is placed close to the node writing to it the first time, yet
this behavior may not be beneficial for a hybrid multicore
chip. Write instructions can often be implemented as a
fire-and-forget instruction, whereas latency resulting from
reading data can directly harm performance. If using first-
touch a latency core will have a high latency to data written
by its throughput cores, which is obviously not desirable.
Furthermore, current placement techniques are implicit and
hardly transparent. It is hard to keep track of where data is
stored, since its location is not explicitly visible. Explicit
placement of data offers a more direct approach, which
forces developers to deal with memory placement and may
thereby look more complex at first. However, in case NUMA
issues are important, direct control can be more flexible and
easier to maintain.

VI. HARDWARE SETUP

Due to the lack of a real hybrid multicore system we tested
our model on an Intel Core i7 920 with both a NVIDIA
GeForce GTX 480 and a NVIDIA Tesla C2050.

• Core i7 920 is a quadcore CPU based on Intel’s
Nehalem architecture running at 2.66 GHz.

• GeForce GTX 480 is a GPU based on NVIDIA’s Fermi
architecture and consists of 15 so-called multiproces-
sors each with 32 cores resulting in a total of 480 cores.
The GPU has access to 1.5 GB global memory, which
is high bandwidth memory directly put on the same
board as the chip.

• Tesla C2050 is a GPU based on NVIDIA’s Fermi archi-
tecture as well, but only consists of 14 multiprocessors
resulting in a total of 448 cores. The GPU has access
to 3 GB of global memory.

We use NVIDIA’s CUDA to program the GPU and use
its so-called unified virtual address space to simulate a
hybrid multicore chip. By using the virtual address space,
CPU main memory and the global memory of all GPUs are
mapped in the same memory address space. In general each
device can access every memory location.

• Both GPUs can access CPU main memory, if allocated
as page locked memory, also known as pinned memory.
Developers can allocate memory to be cache coherent
with the CPU, or allocate memory as write combined,
which prevents the CPU from caching it. Accessing
write combined memory can result in a performance
increase of up to 40% [12] for the GPU at the cost of
increased CPU access latency.

• The CPU can access GPU memory by explicitly making
a partial copy of GPU memory into main memory using
a CUDA specific memcpy function.

• If both GPUs are Tesla cards they can directly read
and write each others global memory, however this is
not possible in our system. This is a pure hardware
limitation and not a limitation in our model or our
implementation.

Even though there is a shared address space, there are no
atomic operations for all devices, but atomic operations are
atomic for one device only.

Memory accesses from a GPU to main memory or from
a CPU to global memory are DMA transfers over the PCI
Express bus, which has a rather high latency and a maximum
bandwidth of 8 GB/s. Remote memory accesses are thereby
more expensive than for hybrid multicore systems. This
problem makes it hard to judge the performance of our
implementation regarding hybrid chips, so we have left most
performance optimizations of our implementation out for
future work.

VII. MODEL IMPLEMENTATION

We have implemented the model in a set of data structures
available as a C++ library. The library has been tested with
CUDA and x86 architectures and is available open source1.
The implementation was done together with the PGAS
implementation of the model, but at the time of this writing
not all features discussed here will work together with their
PGAS counterparts. The PGAS and hybrid part share the
implementation for synchronization and data distribution.
Furthermore, e. g. CPUs in a remote node can access local
pinned memory, however this is currently not true for remote
GPUs, and local CPUs cannot access remote global memory.
Future work will unify both implementations. A detailed
discussion of the PGAS implementation is out of scope for
this work.

As the current target architectures do not have direct sup-
port for our synchronization mechanism, we implemented
it by adding a flag, as discussed before. The flag is stored
directly in front of a synchronization unit. We put a memory
barrier before setting the flag to make sure all data is written
before another thread can read the flag as available. The flag
is set using volatile variables, so the flag itself is directly
made available. The flag must not be set atomically, as in
a correct program it is not changed by multiple threads,
however our implementation uses atomic operations to try
to detect possible developer errors. In case two threads try
to change the same flag, an assertion is triggered and the
program is stopped. As our system does not provide atomic
operations for all devices the checks cannot detect all errors
and is only a best effort approach.

Our flag based implementation is rather lightweight. The
costs for writing a synchronization unit are increased by the
cost of setting the flag. There should be no contention on
modifying the flag nor will there be any false sharing with

1https://github.com/jbreitbart/sa-pgas



reasonable large synchronization sizes. In case the flag is not
yet set, reading a synchronization unit will spinloop until the
flag is set. Note that only the reads in the loop must not be
from cache on non cache-coherent systems, as in case the
flag was once set it will not be changed. In case the flag is
already set, the costs added are low.

We allow explicit data placement by using what we call
distributions. Distributions must be supplied whenever a data
structure is created and are used as both an allocator and
random access iterator, that is the distribution allocates all
data required for the data structures and manages all accesses
to it. Data access is managed by three basic functions.

• get() manages accesses to the synchronization unit
and blocks in case data is not yet written.

• get_unitialized() returns a pointer where data
can be written to.

• set() marks the synchronization unit to be written.
Data writes are in general done in three steps.
1) get_unitialized() is called. The functions re-

turns a pointer to a synchronization unit.
2) Data is written to the pointer returned in step 1.
3) set() is called marking the data as available.
The optimal distribution most likely depends on the spe-

cific task, so we made distributions easy to create. We supply
low level allocators and pointer like random access iterators,
which take care of memory allocation and synchronization,
as well as data access itself. The allocators are specific for a
memory space, and offer implementations for all three data
access functions. When the low level constructs are used,
a distribution must only implement a mapping of a linear
address space to the allocated memory blocks.

As an example, a minimal distribution maps a linear
address space to a single block of pinned memory, so all
data is stored close to the CPU and accessible by CPUs and
GPUs. A distribution could also allocate memory on both
GPUs and distribute the data stripe-wise between the two
memory spaces. The implementation of this distribution can
allocate two memory blocks in its constructor and implement
the data access functions to forward the accesses to the low
level iterator responsible for the requested memory. The
overhead of the distribution depends on how complex the
mapping of the data is, in case of e. g. the trivial pinned
memory distribution the compiler will most likely inline all
function calls resulting in hardly any overhead.

VIII. EXAMPLE SCAN IMPLEMENTATION

In this section we first introduce the CUDA parallel prefix
sums implementation suggested by Harris et al. [4] and
afterwards outline how we distributed the workload to the
different devices.

All prefix sums – also known as scan – is an important
parallel building block used in a wide variety of algorithms.
Scan takes an input array [x0, x1, ..., xn−1] and a binary

associative operator + with the identity I as input and
returns [I, x0, (x0 + x1), ..., (x0 + x1 + ...xn−2)]. Harris et
al. suggested a work-efficient implementation for CUDA,
which is split in three steps. In the first step the whole
array is subdivided into blocks and a local scan is performed
on every block. In this step the block sums of every block
are written to an auxiliary array (SUM). In step 2, SUM is
scanned and in a third step, the result of the scan are used
to update the original array, so it contains the final result.
Figure 1 gives a basic overview of the algorithm in which
we added the filling of the input array as a step 0.

Our implementation uses the CPU for filling the input
array and the scan of the block sums (steps 0 and 2), whereas
we use one GPU for the block wise scan and another one
for producing the final results, which allows the systems to
automatically form a pipeline. We use 5 vectors in our scan
code, all storing the data in pinned main memory.

• The input array filled in step 0 uses a synchronization
size of 256, which is a reasonable size for the block
local scan on the GPU.

• The scanned blocks are stored in another vector again
with a synchronization size of 256.

• The block sums are stored in a vector with a synchro-
nization size of 1, so the CPU can continue to compute
the scan as soon as possible.

• The scanned block sums are again stored with a syn-
chronization size of 1.

• The final result vector uses a synchronization size of
256.

As soon as the CPU has generated 256 input elements,
the first GPU multiprocessor can start with a block local
scan. The CPU on the other hand can scan SUM as soon
as the first block sum is available. After the first block
sums are scanned, the second GPU can start computing
the final result. Whereas this distribution of work does not
provide high performance on the used system due to the
slow communication link, it demonstrates that using multiple
modules in parallel must hardly increase overall program-
ming complexity. As a downside, the algorithm uses a rather
high amount of memory. Previous dataflow architectures
solved such issues by treating all but the final result as
transient memory, which were automatically removed when
no longer needed. Implementing such a feature in software
on a hybrid system may turn out to be rather complex
and future work is required to identify if e. g. a reference
counting approach offers sufficient results. Experiments with
reference counting in the PGAS model seem to provide a
reasonable usability. The current implementation requires
the CPU to free the memory when it is no longer used,
e. g. in the scan algorithm the input data can be deleted as
soon as the block sum scan is complete, because it will not
be used again.

Scan is normally computed on preliminary results to



Problem size (in 256 element blocks) 50 100 200 400 500 1000

Runtime (ms) 5.833 1.1595 2.3537 4.6528 5.8126 11.6958
Input (ms) 5.806 1.1553 2.3468 4.6404 5.7974 11.6668
Pure computation (ms) 0.0027 0.0042 0.0069 0.0124 0.0152 0.029

Table I
RUNTIME FOR A SINGLE SCAN COMPUTATION WITH DIFFERENT INPUT SIZES.

achieve the final result. To simulate such a computation
we slowed down the generation of input by doing 50,000
additions per 256 elements. We measured performance of
our implementation with several input sizes (Tab. I). The
table shows:

• runtime The total runtime including the generation of
the input data.

• input The time required to generate the input data.
• pure computation The time required to complete the

computation after the input was generated.
We can see that time required for input generation in-

creases with larger problem size, but pure computation time
is constant. This gives a clear indication that the pipeline
works as expected and almost all computations are done
while the input data is generated.

IX. RELATED WORK

Overall, the topic of this paper is related to a large
spectrum of research. Dataflow hardware has been an active
area of research in the 1970s and 1980s, as exemplified by
the Manchester dataflow architecture [2] or the Goodyear
STARAN [14]. From a current viewpoint these approaches
were unable to scale effectively and were replaced by other
architectures. However, the techniques partially returned in
e. g. out of order architectures, although at a smaller scale
than originally planned. Single assignment memory is not
used in current mainstream languages, but of course used
in functional programming. For example, SISAL (Streams
and Iteration in a Single Assignment Language) [15] is a
functional programming language using implicit parallelism
extracted from a dataflow graph, yet relies on compilers to
generate dataflow graphs and targets SMT systems. Haskell
uses so-called MVars [16], which are atomically filled com-
munication channels between threads that block the reading
thread in a similar fashion to our single assignment memory.
Cray’s Chapel [17] offers synchronization variables, which
can work similar to an MVar or to our single assignment
memory, yet they are only supported for basic data types
and do not support synchronization granularity. Chapel’s
memory model does not target hybrid systems and Chapel in
general has not yet been used to program a hybrid multicore
CPU. One of the first hardware architectures supporting
synchronization bits was the Denelcor HEP [18], which
marks values as unavailable after they have been read. After
working on the HEP, Smith has been following the concept

of tying synchronization to memory accesses for a longer
time [19], yet the concept has not been used in a major HPC
programming system. A current architecture supporting this
mechanism is Cray’s XMT [1].

X. CONCLUSION

In this paper, we suggested a programming model easing
the transition from current multicores to hybrid systems for
developers. Our model is based on single assignment mem-
ory and provides support for fine grained synchronization
and non cache coherent systems, as well as the ability to
deal with NUMA issues. We implemented a prototype of
the model as a C++ library demonstrating its ease of use.
The model by itself is not limited to hybrid systems and
may turn out to be feasible even for clusters, yet research in
this area is still ongoing. As most of the work till now has
been done regarding the model, future work will improve
the implementation especially focus on real hybrid systems
and test the model on other problems.

REFERENCES

[1] Cray Inc., “Introducing the Cray XMT Supercomputer,” Cray
Inc., 2010.

[2] J. R. Gurd, C. C. Kirkham, and I. Watson, “The Manchester
prototype dataflow computer,” Commun. ACM, vol. 28, pp.
34–52, January 1985.

[3] G. E. Blelloch, “Scans as Primitive Parallel Operations,” IEEE
Trans. Computers, vol. 38, no. 11, pp. 1526–1538, 1989.

[4] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix
sum (scan) with CUDA,” in GPU Gems 3, H. Nguyen, Ed.
Addison Wesley, August 2007, ch. 39, pp. 851–876.

[5] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in
Multi-Core Architectures: Understanding Mechanisms, Over-
heads and Scaling,” in Proceedings of the 32nd annual
international Symposium on Computer Architecture, 2005, pp.
408–419.

[6] D. Abts, S. Scott, and D. J. Lilja, “So Many States, So
Little Time: Verifying Memory Coherence in the Cray X1,” in
Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, 2003.

[7] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell
broadband engine architecture and its first implementation:
a performance view,” IBM J. Res. Dev., vol. 51, pp. 559–572,
2007.



+ +

C

P

U

C

P

U

G

P

U

0

G

P

U

1

every threadblock 
stores its last sum in an 

auxiliary array (SUM)

block wise scan

scan block sums

add scanned block sum 
to scanned blocks

fill input array with data0

1

2

3

Figure 1. Overview of the scan algorithm.

[8] AMD, “AMD Fusion Family of APUs,” 2011.

[9] ——, “AMD Accelerated Parallel Processing OpenCL.”
AMD, 2011.

[10] W. Liu, B. Lewis, X. Zhou, H. Chen, Y. Gao, S. Yan, S. Luo,
and B. Saha, “A balanced programming model for emerging
heterogeneous. multicore systems,” in Proceedings of the 2nd
USENIX Workshop on Hot Topics in Parallelism, 2010.

[11] J. Held, “”Single-chip cloud computer”, an IA tera-scale
research processor,” in Euro-Par 2010 Proceedings of the
2010 Conference on Parallel Processing, 2011, pp. 85–85.

[12] NVIDIA Corporation, “NVIDIA CUDA Compute Unified
Device Architecture Programming Guide. Version 4.0,”
NVIDIA Corporation, 2011.

[13] “The OpenCL Specification. Version 1, revision 43,” May
2009.

[14] Goodyear Aerospace Cooperation, “STARAN APPLE Pro-
gramming Manual,” 1972.

[15] J. T. Feo, D. C. Cann, and R. R. Oldehoeft, “A Report on the
Sisal Language Project,” Journal of Parallel and Distributed
Computing, vol. 10, pp. 349–366, 1990.

[16] S. Peyton Jones, A. Gordon, and S. Finne, “Concurrent
Haskell,” in Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1996.

[17] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The
Cascade High Productivity Language,” in 9th International
Workshop on High-Level Parallel Programming Models and
Supportive Environments, 2004.

[18] B. J. Smith, “Architecture and applications of the HEP
multiprocessor computer system,” in Society of Photo-Optical
Instrumentation Engineers Conference Series, 1981, pp. 241–
+.

[19] G. Alverson, R. Alverson et al., “Exploiting heterogeneous
parallelism on a multithreaded multiprocessor,” in Proceed-
ings of the 6th International Conference on Supercomputing,
pp. 188–197.


